For all $x \in (0,1)$

(2000S)

(a)
$$e^{x} < 1 + x$$

(b)
$$\log_{e}(1+x) < x$$

(c)
$$\sin x > x$$

(d)
$$\log_e x > x$$

SOLUTION

(b) Let
$$f(x) = e^x - 1 - x$$
 then $f'(x) = e^x - 1 > 0$ for $x \in (0,1)$

 \therefore f(x) is an increasing function.

$$\therefore f(x) > f(0), \forall x \in (0,1)$$

$$\Rightarrow e^x - 1 - x > 0 \Rightarrow e^x > 1 + x$$

: (a) does not hold.

(b) Let
$$g(x) = \log(1+x) - x$$

then
$$g'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x} < 0, \forall x \in (0,1)$$

 \therefore g(x) is decreasing on (0, 1) \therefore x > 0

$$\Rightarrow g(x) < g(0)$$

$$\Rightarrow \log(1+x)-x < 0 \Rightarrow \log(1+x) < x$$

: (b) holds. Similarly it can be shown that (c) and (d) do not hold.